Geekbench 5 to 6 conversion factor for smartphone single core benchmarks

Tags: computers.
By lucb1e on 2025-04-10 05:56:47 +0100

Scatter plot showing 51 data points along a roughly linear line from bottom left to top right, with about 6 outliers (4 below, 2 above). On the X axis is geekbench 5 single score, on the Y axis the geekbench 6 single score. Text shows data credit to tweakers.net testlab

Wanted to note this somewhere since I couldn't find it anywhere. Text from image for accessibility:

Title: Geekbench 5 to 6 conversion factor (single core) on smartphones. Data credit: Tweakers.net Testlab

Description: 51 phones from 14 brands (incl. Google, Samsung, Sony, Apple, Fairphone, etc.). Linear trend line computed by libreoffice: Gbench6single = 1.2918 × Gbench5single + 37.732, R2 = 0.81996.
(The linear trend had the best R2 score and visually looked the most sensible. The "power" fit was also very good but was essentially a straight line. Logarithmic or exponential fits were far off.)

Raw data:


Geekbench 5 single Geekbench 6 single OS ratio
312 662 Android 2.12179487179487
349 414 Android 1.18624641833811
352 431 Android 1.22443181818182
560 845 Android 1.50892857142857
675 913 Android 1.35259259259259
687 900 Android 1.31004366812227
690 902 Android 1.30724637681159
696 912 Android 1.31034482758621
700 924 Android 1.32
720 1540 Android 2.13888888888889
723 923 Android 1.27662517289073
731 951 Android 1.30095759233926
748 937 Android 1.25267379679144
749 415 Android 0.554072096128171
752 954 Android 1.2686170212766
762 823 Android 1.08005249343832
771 1234 Android 1.60051880674449
773 1109 Android 1.4346701164295
779 1019 Android 1.30808729139923
783 1024 Android 1.30779054916986
857 1139 Android 1.32905484247375
867 1133 Android 1.30680507497116
882 1097 Android 1.2437641723356
985 1372 Android 1.39289340101523
989 1258 Android 1.27199191102123
1122 1279 Android 1.13992869875223
1153 1445 Android 1.25325238508239
1164 1036 Android 0.890034364261168
1194 1494 Android 1.25125628140704
1269 1802 Android 1.42001576044129
1271 1636 Android 1.28717545239969
1294 1773 Android 1.37017001545595
1302 1723 Android 1.32334869431644
1349 1964 Android 1.45589325426242
1374 1941 Android 1.41266375545852
1383 1977 Android 1.4295010845987
1392 3159 Android 2.26939655172414
1427 2031 Android 1.42326559215137
1429 1308 Android 0.915325402379286
1464 2049 Android 1.39959016393443
1467 2016 Android 1.37423312883436
1469 1968 Android 1.33968686181076
1476 1854 Android 1.25609756097561
1633 2159 Android 1.32210655235762
1667 2206 Android 1.32333533293341
1683 2312 Android 1.37373737373737
1806 1753 Android 0.970653377630122
1883 2463 iOS 1.30801911842804
1891 2391 iOS 1.2644103648863
2113 2834 iOS 1.34122101277804
2136 2771 iOS 1.29728464419476
1.31004366812227 median


Sadly I was too lazy to write down the phone models. This already took more time than I needed to spend on this :P

Data was sourced from https://tweakers.net/smartphones/vergelijken/ by selecting for phones published in April 2022 onwards and checking which ones had both Geekbench 5 and Geekbench 6 scores
lucb1e.com
Another post tagged 'computers': Laptops, SSDs and wear

Look for more posts tagged computers.

Previous post