
Faucet Networking
About handles
Analogous to Game Maker’s built in data structure functions, this extension uses handles to 
allow games to refer to sockets, buffers and other objects.
Passing an invalid handle to a function will generate reasonable behaviour. For example, socket 
functions will pretend that the handle belongs to a socket in error state, and reading the error 
string will return an appropriate message.
Handles for this library are always integer numbers greater than 0, so you can use a simple 
conditional check to find out if e.g. a function returned a handle or an error code:

newsock = socket_accept(); 
if(newsock) { 
    // Handle the new connection
}

About integers and rounding
For some function parameters, only integer values make sense. For example, you can’t read 
2.5 bytes, or connect to port 91.6. In cases where integer values are expected, they are 
rounded toward zero (truncated) before use, except where otherwise noted. The most important 
exception are the write_xxx functions for appending values to a buffer or socket, those always 
round toward the nearest integer.
 
Connecting and disconnecting

tcp_connect(host, port) : tcpSocket
host is a string containing an IPv4 or IPv6 address or a hostname.
port is an integer in the range of 1 to 65535.
The returned socket can instantly be used in sending and receiving operations and will 
buffer sent data internally until the connection is actually established.
If the connection attempt fails, the socket will eventually report an error (see 
socket_has_error).

udp_bind(port) : udpSocket
port is an integer in the range of 0 to 65535.
Creates a new UDP socket and binds it to the specified port. The returned socket 
can be used for receiving datagrams sent to this port. Also, datagrams sent from this 
socket will use this port as their source port. If port is 0, the socket will be bound to a 
random unused port. The actual port number can be determined using the function 
socket_local_port(socket).
Note: On Windows versions before Vista, the “random unused port” feature can select 
a port which is free for IPv4, but in use for IPv6. In that situation, the created socket will 
only work with IPv4.



socket_connecting(socket) : bool
Returns true if the socket is currently performing a connection attempt. Returns false 
once the connection is established or if the connection failed. Always returns false for 
UDP sockets.

tcp_listen(port) : acceptor
port is an integer in the range of 0 to 65535.
Create a new acceptor to listen for incoming TCP connections on the indicated port. 
Both IPv4 and IPv6 connections to that port will be accepted. If an error occurs, the 
returned acceptor will indicate the failure. Please note that acceptors will only flag an 
error if both IPv4 and IPv6 connections can't be accepted anymore.
If the port number is 0, the socket will be bound to a random unused port. The port 
number can be determined using the function socket_local_port(socket).
Note: On Windows versions before Vista, the “random unused port” feature can select a 
port which is free for IPv4, but in use for IPv6. In that situation, the created acceptor will 
only work with IPv4.

socket_accept(acceptor) : tcpSocket | errorcode
Accept a connection from an acceptor. If a connection is available, a TCP socket handle 
is returned. If no connection is available, a negative value is returned.

socket_destroy_abortive(socket | acceptor) : void

socket_destroy(socket | acceptor) : void
Closes the connection and destroys the socket. All sockets and acceptors have to be 
destroyed, even if they are already closed or in an error state, to release the handle and 
the associated resources. The handle will become invalid immediately and shouldn’t be 
used again afterwards.
socket_destroy_abortive will close the connection immediately without trying to send 
any remaining data. socket_destroy will attempt to send all data from the socket’s send 
buffer before closing (graceful close). In general, use a graceful close if you are closing 
the connection because there is nothing left to send or receive, and use an abortive 
close if you want to cut off a connection. If the socket is already in error state, then the 
connection is already closed, so there is no difference between the two functions.
If the socket is a TCP socket and the remote end of the connection is still sending data 
when you close the local socket, his socket will probably receive an error so that he will 
not be able to read all data that you sent, even when you use a graceful close.
For acceptors, it doesn’t matter which of the functions you use.

Sending and receiving information
To understand how sending and receiving work, you first need to know that a socket has two 
internal buffers: The send buffer and the receive buffer. To send data over TCP, you need to 
write data to the socket’s send buffer and then call socket_send(tcpSocket). Sending datagrams 
over UDP is similar: You write the content of the datagram to the socket’s sendbuffer and then 



call udp_send(udpSocket, host, port).
When you receive data, it will be stored in the socket’s receive buffer, and you can read it from 
there.
To access these buffers, you can use some of the normal buffer functions described in the 
Buffers section and pass them a socket handle instead of a buffer handle. In general, buffer 
functions that read data will refer to the receive buffer, and those that write data will refer to the 
send buffer. However, not all buffer functions make sense for the internal buffers of sockets, so 
check the descriptions of the individual functions to find out more.
If you need more flexibility, you can prepare your data in a normal buffer first and then use 
write_buffer to copy that data to the send buffer. Analogous to this, you can copy the contents of 
a receive buffer into a normal buffer with the same function.

tcp_receive(tcpSocket, size) : bool
Try reading size bytes into the socket’s receive buffer. The previous contents of the 
receive buffer will be discarded. If the requested number of bytes is not available, 
a receive operation is started in the background to read at least as many bytes as 
requested, so that calling this function again later can succeed.
Returns true if the operation was successful. The receive buffer now contains exactly the 
number of bytes requested. If false is returned, the receive buffer will be empty.
If size is negative or far too large (>=232), the function will return false without starting a 
background read.
If the connection is closed and more bytes are requested than are remaining to be read, 
the requested number of bytes can never become available. In this case the socket will 
transition to an error state.

tcp_receive_available(tcpSocket) : size
Read all data currently available from the socket into the socket’s receive buffer. The 
previous contents of the receive buffer will be discarded. The function returns the 
number of bytes read, which is the same as the new size of the receive buffer.

tcp_eof(tcpSocket) : bool
Determine if there is no more data to receive. This means that the connection is closed 
in the receiving direction, either because the sender has closed it or because of an error, 
and all internally buffered data has been received (though there might still be unread 
data in the receive buffer). In that case, attempting to receive any more data on this 
socket will cause the socket to report an error.

socket_send(tcpSocket) : void
Try to send data from the internal sendbuffer out through the socket. If you call this 
function too often, it might result in many small TCP packets being sent, which causes 
a lot of overhead and thus needs more bandwidth. If you call it too seldom, the data will 
sit in the sendbuffer for a longer time before being sent, so you get larger delays. A good 
time to call this is right after you’re done writing things to the sendbuffer of this socket for 
this step.

socket_sendbuffer_size(socket) : size



How many bytes are buffered for sending? This will return the approximate number 
of memory bytes used for this socket to buffer outgoing data, which includes both the 
actual sendbuffer that you can write to, and the data already queued for sending.
Note that this is an estimate of the actual memory requirement, so it can be larger than 
the number of bytes actually written to the socket. For example, if you try to send a lot 
of zero-length UDP datagrams, they will still take up memory in the queue which will be 
visible here.
If the socket can’t push data out to the network as fast as the application demands, the 
ammount of queued data will grow. This can be used to detect slow connections, so 
that you can e.g. reduce the data rate. However, the result should be taken with a grain 
of salt. The number returned does not include data already handed to the operating 
system, which also manages buffers for outgoing data. This is usually just a few 
kilobytes, but if you try to send a large block of data at once (up to a few megabytes), 
Windows might simply accept it so you won’t see this data reflected in the result of this 
function, even though it is still being sent. If you send data in small chunks though, 
Windows will buffer less of data and you should see a growing backlog pretty quickly.

socket_sendbuffer_limit(socket, size) : void
Limit the memory (in bytes) used by the socket to buffer outgoing data. 0 means no limit. 
Analogous to socket_sendbuffer_size, this function does not only apply to the actual 
sendbuffer of the socket, but also to the data already queued for sending.
If a TCP socket would need to buffer more data than this, the connection will be closed 
and an appropriate error will be indicated. There is no default limit for TCP sockets since 
a reasonable value depends heavily on the application. To prevent “out of memory” 
problems it is recommended to set this limit on every TCP socket. 
UDP sockets will continue working when the limit is reached, but they will discard 
datagrams. UDP sockets have a default limit of two megabytes.

socket_receivebuffer_size(socket) : size
Returns the ammount of data in the receive buffer, analogous to buffer_size for normal 
buffers. The reason why this is a seperate function is to avoid confusion, because 
buffer_size(socket) doesn’t make clear whether the send or receive buffer is meant, and 
the function would make sense for both.
You should use this function to determine the size of a UDP packet after receiving it.

udp_send(udpSocket, host, port) : bool
host is a string containing an IPv4 or IPv6 address or a hostname.
port is an integer in the range of 1 to 65535
Send the current content of the UDP socket’s sendbuffer as a datagram to the indicated 
host and port. The sendbuffer will be cleared by calling this function. If the content of the 
sendbuffer is too large to send as a single datagram (larger than 65507 Bytes), nothing 
at all is sent, but the sendbuffer will still be cleared.
While using a hostname for the host parameter is possible, keep in mind that this 
leads to a hostname resolution every time you send a datagram, and no datagrams 
are sent while this resolution is running. Therefore, it is strongly recommended to use 
ip_lookup_create() and related functions to find an IP for that hostname and use that IP 



directly, unless you only need to send a small number of datagrams to this host and you 
don’t mind that it can delay other datagrams on this socket from being sent.
It is important to note that this function will also send a datagram if the sendbuffer is 
empty. In this case, a datagram of length 0 will be sent.
If the function returns true, this indicates that datagrams had to be discarded because 
the send queue has reached its memory limit. You can check and control the size of the 
send queue with the functions socket_sendbuffer_limit() and socket_sendbuffer_size().

udp_send(buffer, host, port) : bool
host is a string containing an IPv4 or IPv6 address or a hostname.
port is an integer in the range of 1 to 65535
This convenience function allows you to send a buffer as a single datagram via UDP 
directly, instead of creating a socket first. Internally, this function creates a default UDP 
socket on a random port when it is first called, and uses that to send the data contained 
in the buffer. Therefore, the remarks made in the udp_send socket function above apply 
here as well, and the return value of this function has the same meaning, but you cannot 
control the send queue for the default socket which is used here.
You can use this function if you only need to send a datagram but don’t need to listen for 
a reply.
Yes, this function looks identical to the one that uses a socket. The two are only 
distinguished by whether the first argument is a socket handle or a buffer handle.

udp_receive(udpSocket) : bool
Receive a datagram and place its content into the socket’s receive buffer. The previous 
content of the receive buffer is discarded, even if no new datagram is received. Returns 
true if a datagram was received, false if not.
You can query the remote port and IP of the received datagram by using the functions 
socket_remote_port and socket_remote_ip.

Buffers
Buffers typically contain data that has been received or should be sent.
Handing an invalid buffer handle to a buffer function will cause the function to behave as if it 
was called on a constantly empty buffer. Some of these functions will act on a socket’s send or 
receive buffer if a socket handle is passed to them. The parameter names socketReceiveBuf 
and socketSendBuf indicate which of the two buffers the parameter refers to.

buffer_create() : buffer
Create a new, empty buffer.

buffer_destroy(buffer) : void
Destroy a buffer and release its handle. This function should be called on all buffers that 
are no longer needed to release the memory allocated to them.

buffer_clear(buffer) : void
Remove all content from the buffer, so that it behaves exactly like a buffer that has only 
just been created.



buffer_size(buffer) : size
Returns the number of bytes in the buffer.

buffer_bytes_left(buffer | socketReceiveBuf) : size
Returns the number of bytes that can still be read from the buffer.

buffer_set_readpos(buffer | socketReceiveBuf, pos) : void
Set the read pointer of the buffer to a new position (given in bytes). The given position 
will be clipped to the beginning or the end of the buffer if it is below 0 or above 
buffer_size(buffer). There is no corresponding buffer_get_readpos(), if you really need 
this you can calculate it as buffer_size(buffer)-buffer_bytes_left(buffer).

write_[xxx](buffer | socketSendBuf, real) : void
Append the given value to the end of the buffer, or to the socket’s send buffer. The 
following functions are supported:
write_ubyte 8 bit unsigned integer
write_byte 8 bit signed integer
write_ushort 16 bit unsigned integer
write_short 16 bit signed integer
write_uint 32 bit unsigned integer
write_int 32 bit signed integer
write_float 32 bit floating point value
write_double 64 bit floating point value
The value of the provided real will be clipped to fit the range of the target type. For 
example, attempting to write anything above 127 as a (signed) byte will always write 
127.
When converting the real to an integer type, the value is rounded to the nearest integer, 
with the halfway point being rounded away from 0.
To give some examples of this: write_short(buffer, 42.5) and write_short(buffer, 43.499) 
will both write 43, and write_short(buffer, -2.5) will write -3.

write_string(buffer | socketSendBuf, string) : void
Append a string in Game Maker’s 8 bit character encoding to the buffer, or to the 
socket’s send buffer. This will only write the raw characters, no length information or 
delimiter is included, so you will want to do that yourself.

write_buffer(target, source) : void
Append entire source buffer to the end of target. Both source and target may be either 
sockets or buffers. If target is a socket, it refers to the socket’s send buffer. If source is a 
socket, it refers to the socket’s receive buffer. This operation doesn’t affect the buffers’ 
read positions and always copies the entire buffer content.

write_buffer_part(target, source, size) : size
Append size bytes from the source buffer to the end of target. Both source and target 
may be either sockets or buffers. If target is a socket, it refers to the socket’s send 



buffer. If source is a socket, it refers to the socket’s receive buffer.
In contrast to write_buffer, this function starts reading from the source at the current read 
position, and advances the read position accordingly. If less than size bytes are left to 
read in the source buffer, only the remaining data is appended to the target buffer.
The number of bytes actually copied is returned.

read_[xxx](buffer | socketReceiveBuf) : real
Read a value of the expected type from the buffer, starting at its current read position. 
The read position will be advanced to the next byte after the read value. If there are not 
enough bytes left in the buffer, the returned value is undefined and the read position is 
set to the end of the buffer. If the buffer does not exist, 0 is returned. See write_[xxx] for 
possible types.

read_string(buffer | socketReceiveBuf, size) : string
Read the given number of characters from the buffer and return them as a string. The 
reading starts at the buffer’s current read position. The read position will be advanced 
to the next byte after the read characters. If there are not enough bytes left in the buffer, 
the returned string will be shorter than requested and the read position is set to the end 
of the buffer. If size is negative, an empty string is returned and the buffer’s read position 
will be unchanged.

Endianness and compatibility
Data is always sent over the network as a bunch of bytes. For data types that consist 
of several bytes (e.g. int), that creates the question in which order they are transmitted. 
Most networking applications use the big-endian format, where the most significant byte 
of an integer is sent first (we’ll get to floating point values further below.) This is also the 
default byte order for this extension. However, some applications use the little-endian 
format where the bytes are sent in the opposite order. Perhaps most important in the 
context of GM networking, 39dll uses little-endian. In order to support both formats, the 
functions in this chapter were introduced.
In this library, endianness is an attribute of buffers and sockets. Whenever you write 
a value to a buffer or socket, it will be converted to a sequence of bytes using the 
endianness set for this target. The endianness also determines how values are read. 
Buffers and strings are already sequences of bytes, so writing those is not affected by 
the endianness of the target.
The previous sentence is pretty important, so let’s consider what it means in practice: 
Setting a socket to little-endian does not ensure everything sent or received through 
it will be little-endian - only values written/read directly to/from the socket’s send and 
receive buffer will be converted. If you write your values to a big-endian buffer first and 
then write that to the little-endian socket, the data will still be sent as big-endian.
Another important point is about floating point values. First off, these are converted to 
the requested endianness as well. However, there are more uncertainties with floats 
and doubles than just the byte order, because they can have different formats on 
different kinds of computers, and there is no single exact standard that everyone uses. 
This library sends them in the native format used by x86 PCs, and you will not run into 



problems as long as you communicate with games on other PCs which also use this 
library. However, if you want to communicate with different software or different kinds of 
computers, using float and double might give you unexpected results.

set_little_endian_global(bool) : void
If the parameter is true, all new buffers and sockets are created with little-endian byte 
order, if it is false they will use big-endian. Already created buffers and sockets are not 
affected. The default byte order is big-endian.

set_little_endian(buffer|socket, bool) : void
Set the socket or buffer to use little-endian (bool=true) or big-endian (bool=false) byte 
order.

Hostname/IP-Lookup
The basic problem is simple: You have a hostname, and you want an IP to go with that. 
However, looking a bit closer this problem has a few interesting aspects. One of them is that 
there might be several IP addresses associated with a single hostname. Some of those might 
be IPv4 addresses, and some IPv6. For example, google.com has six different IPv4 addresses 
at the moment. heise.de has one IPv4 and one IPv6 address. So, a simple function that takes a 
hostname and returns the IP is not sufficient.
 
A function like that would have another problem as well: Resolving a hostname into an IP can 
take time, so the function would have to block until the result is available. Just as with blocking 
socket calls, this would possibly freeze your game for a short time, which looks unprofessional 
on a game client and has disastrous effects on a game server.
 
This is why the following functions work differently: They view a lookup (the process of finding 
the IPs to a hostname) as a resource with a handle. When starting a lookup, you get a handle 
that you can query regularly until the name resolution is finished. After that, you can query the 
handle for all results.
 
Example use:

lookup = ip_lookup_create("google.com"); 
 
// Wait until the lookup is ready. You can check this once per step

// instead, so your game can continue running normally.

while(!ip_lookup_ready(lookup)) {
    sleep(1);
} 
 
// Show all IPs that were found. If none were found, 

// no message is shown.

while(ip_lookup_has_next(lookup)) {
    show_message(ip_lookup_next_result(lookup));
}
ip_lookup_destroy(lookup);

http://google.com
http://google.com
http://google.com
http://heise.de
http://heise.de
http://heise.de


 

ip_lookup_create(hostname) : lookup 
ipv4_lookup_create(hostname) : lookup 
ipv6_lookup_create(hostname) : lookup

Start a new lookup to find the IP address or addresses associated with the hostname. 
The first variant will look for both IPv4 and IPv6 addresses, the other two only look for 
one specific type of address. The return value is a handle to a lookup object which can 
be used in the functions below, and which has to be destroyed after use.

ip_lookup_ready(lookup) : bool
Returns true if the lookup is finished and the results can be queried with the functions 
below, false if the lookup is still running. Note that calling this function on an invalid 
handle will return true, to prevent erroneous code from waiting indefinitely for a 
nonexistent lookup to finish.

ip_lookup_has_next(lookup) : bool
Returns true if calling ip_lookup_next_result() on this lookup will return another IP, false 
if all IPs found have already been read or if the lookup is not ready.

ip_lookup_next_result(lookup) : ip
Returns the next IP address found by the lookup. Calling this function repeatedly on a 
ready lookup will return all IPs found, one at a time, and then return an empty string for 
every further call. If the lookup is not ready, this function returns the empty string.

ip_lookup_destroy(lookup) : void
Destroys the lookup object and releases the handle.

ip_is_v4(string) : bool 
ip_is_v6(string) : bool

Returns whether the string is interpreted as an IPv4/IPv6 literal by the operating system. 
This can e.g. be used to find out if an IP returned by ip_lookup_next_result() or by 
socket_remote_ip() is an IPv4 address or an IPv6 address, or if a user-provided string 
can be interpreted as an IP at all. Please note though that Windows can interpret strings 
as IP that you might not expect. For example, simple numbers up to 232 are interpreted 
as numeric IPv4 literals.
ip_is_v6() will always return false if Windows IPv6 support is not installed.
Both functions return false if an empty string is provided.
IPv6 literals that represent mapped IPv4 addresses (e.g. ::ffff:192.0.2.128) are 
interpreted as IPv6 by these functions.

Miscellaneous

socket_remote_ip(socket) : string
For a TCP socket, this returns a string representation of the IP address of the remote 
host that the socket is or has been connected to, or an empty string if the socket has 



never been connected.
The remote IP becomes available once a connection is established and can be queried 
until the socket is destroyed, even if the connection has already been closed or if the 
socket has failed with an error. Sockets returned by socket_accept have the remote IP 
available unless they fail during accepting.
For a UDP socket, this returns the remote (source) IP of the datagram which is currently 
stored in the socket’s receive buffer, or an empty string if no datagram is currently stored 
there.
Please note that the result can be either an IPv4 address or an IPv6 address, depending 
on the protocol of the connection/datagram.

socket_local_port(socket) : port
Returns the local port (1-65535) that the provided socket is bound to. Returns 0 if the 
socket has an error or does not exist.

socket_remote_port(socket) : port
For a TCP socket, this returns the port number which the socket is or has been 
connected to, or 0 if the socket has never been connected. The remote port becomes 
available once a connection is established and can be queried until the socket is 
destroyed, even if the connection has already been closed or if the socket has failed with 
an error. Sockets returned by socket_accept have the remote port available unless they 
fail during accepting.
For a UDP socket, this returns the remote (source) port number of the datagram which 
is currently stored in the socket’s receive buffer, or 0 if no datagram is currently stored 
there.

socket_has_error(socket | acceptor) : bool
When this function returns true the socket or acceptor is no longer able to perform its 
function. 
For a TCP or UDP socket, this means that it can no longer send or receive data over the 
network. Trying to send additional data is useless (but harmless), and trying to receive 
anything will fail as if there was simply no data available.
For an acceptor it means that no new connections will be accepted. 

socket_error(socket | acceptor) : string
Returns a string description of the current error status. This function can return a 
message even if socket_has_error() returns false. This is particularly the case for 
acceptors, which can fail partially (for one protocol) but won’t flag an error while there’s 
still a usable protocol. For acceptors the error messages for all protocols are returned.

debug_handles() : numHandles
Returns the number of valid handles. This can be used in debug output to find out if 
some part of your code is leaking buffer or socket handles.

build_ubyte(bit7, bit6, bit5, bit4, bit3, bit2, bit1, bit0) : real
Construct an unsigned byte out of eight boolean values. Every parameter corresponds to 



a bit in the resulting byte, starting from the most significant bit (Called bit 7, for its place 
value of 27). A bit in the output will be 1 iff the corresponding parameter evaluates to true 
(using Game Maker convention for truth, i.e. value>=0.5).
Example: build_ubyte(1,1,0,0,1,0,0,1) will return 201.

bit_set(value, bitnum, bitval) : real
Sets or clears a single bit in value and returns the result. This function will modify the bit 
at place bitnum (the one with place value 2bitnum). The bit will be set if bitval evaluates to 
true (using Game Maker convention for truth), it will be cleared otherwise.
It is important to understand that Game Maker’s “real” data type is a floating point type, 
which can exactly represent integer values with up to 53 bits (bit 0 to 52). This means 
the following constraints must be observed for the parameters:
bitnum must be in the range of 0 to 52. If it is not an integer, it will be truncated.
bitval must be an integer greater or equal to -253 and smaller than 253.
Using parameters outside this range might give unexpected results. For negative values, 
two’s complement representation is used.
Examples:

bit_set(8, 0, true) will return 9.
bit_set(-8, 0, true) will return -7.

bit_get(value, bitnum) : bool
Checks whether the bit at place bitnum in value is set.
bitnum must be in the range of 0 to 52. If it is not an integer, it will be truncated.
bitval must be an integer greater or equal to -253 and smaller than 253.
Using parameters outside this range might give unexpected results. For negative values, 
two’s complement representation is used.
Example: bit_get(10, 1) will return 1 (true).

append_file_to_buffer(buffer | socketSendBuf, filename) : errorcode
Reads the indicated file and appends its entire content to the end of buffer. Returns 1 on 
success, or a negative error code on failure. If a negative value is returned, the contents 
of the buffer are not changed. Note that reading very large files (hundreds of megabytes) 
is not recommended and can cause “out of memory” errors, crashing your game.

write_buffer_to_file(buffer | socketReceiveBuf, filename) : errorcode
Overwrites/creates the file with the provided name and writes the entire buffer content to 
this file. Returns 1 on success, a negative number on failure.

mac_addrs() : string
Returns a comma-separated string containing the physical addresses (MAC addresses) 
of the network interfaces on the local machine, e.g. ethernet cards, wifi and similar. 
Tunnel interfaces, loopbacks and PPP modems are excluded, since those tend not to 
have interesting physical addresses. This is similar to getmacaddress() in 39dll, except 
that getmacaddress() only returns the address of the first network interface.
If an error occurs (or no interface is found), an empty string is returned. Otherwise, the 
returned string consists of a comma-separated list of addresses, where each address is 
represented as a set of (uppercase) hexadecimal bytes separated by hyphens.
An example return value looks like this: “12-34-56-78-9A-BC,00-81-54-71-DE-CA”



Note that there is no guarantee that the addresses will always be six bytes long, or that 
they will always be globally unique.


